Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132168

RESUMO

Therapy via the gene addition of the anti-sickling ßAS3-globin transgene is potentially curative for all ß-hemoglobinopathies and therefore of particular clinical and commercial interest. This study investigates GLOBE-based lentiviral vectors (LVs) for ßAS3-globin addition and evaluates strategies for an increased ß-like globin expression without vector dose escalation. First, we report the development of a GLOBE-derived LV, GLV2-ßAS3, which, compared to its parental vector, adds anti-sickling action and a transcription-enhancing 848-bp transcription terminator element, retains high vector titers and allows for superior ß-like globin expression in primary patient-derived hematopoietic stem and progenitor cells (HSPCs). Second, prompted by our previous correction of HBBIVSI-110(G>A) thalassemia based on RNApol(III)-driven shRNAs in mono- and combination therapy, we analyzed a series of novel LVs for the RNApol(II)-driven constitutive or late-erythroid expression of HBBIVSI-110(G>A)-specific miRNA30-embedded shRNAs (shRNAmiR). This included bifunctional LVs, allowing for concurrent ßAS3-globin expression. LVs were initially compared for their ability to achieve high ß-like globin expression in HBBIVSI-110(G>A)-transgenic cells, before the evaluation of shortlisted candidate LVs in HBBIVSI-110(G>A)-homozygous HSPCs. The latter revealed that ß-globin promoter-driven designs for monotherapy with HBBIVSI-110(G>A)-specific shRNAmiRs only marginally increased ß-globin levels compared to untransduced cells, whereas bifunctional LVs combining miR30-shRNA with ßAS3-globin expression showed disease correction similar to that achieved by the parental GLV2-ßAS3 vector. Our results establish the feasibility of high titers for LVs containing the full HBB transcription terminator, emphasize the importance of the HBB terminator for the high-level expression of HBB-like transgenes, qualify the therapeutic utility of late-erythroid HBBIVSI-110(G>A)-specific miR30-shRNA expression and highlight the exceptional potential of GLV2-ßAS3 for the treatment of severe ß-hemoglobinopathies.


Assuntos
Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Interferência de RNA , Terapia Genética/métodos , Vetores Genéticos/genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Mutação , Globinas beta/genética , RNA Interferente Pequeno/genética
2.
Front Genome Ed ; 5: 1141618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969374

RESUMO

Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a ß-globin mutation and to reactivate γ-globin expression as two potential therapies for ß-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.

3.
Pharmaceutics ; 14(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35456627

RESUMO

Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.

4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163006

RESUMO

Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.


Assuntos
Células Eritroides/citologia , Edição de Genes/métodos , MicroRNAs/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Células Eritroides/metabolismo , Células HEK293 , Humanos , Estudo de Prova de Conceito
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807258

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.


Assuntos
Células Eritroides/classificação , Células Eritroides/metabolismo , MicroRNAs/genética , Adulto , Fatores Etários , Diferenciação Celular/genética , Linhagem Celular , Eritropoese/genética , Sangue Fetal/citologia , Hemoglobina Fetal/genética , Feto/metabolismo , Humanos , RNA Mensageiro/genética , Fatores de Transcrição , gama-Globinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...